Bagged CART
method = 'treebag'
Type: Regression, Classification
No Tuning Parameters
Bagged Flexible Discriminant Analysis
method = 'bagFDA'
Type: Classification
Tuning Parameters: degree
(Product Degree), nprune
(#Terms)
Bagged Logic Regression
method = 'logicBag'
Type: Regression, Classification
Tuning Parameters: nleaves
(Maximum Number of Leaves), ntrees
(Number of Trees)
Bagged MARS
method = 'bagEarth'
Type: Regression, Classification
Tuning Parameters: nprune
(#Terms), degree
(Product Degree)
Bagged Model
method = 'bag'
Type: Regression, Classification
Tuning Parameters: vars
(#Randomly Selected Predictors)
Boosted Classification Trees
method = 'ada'
Type: Classification
Tuning Parameters: iter
(#Trees), maxdepth
(Max Tree Depth), nu
(Learning Rate)
Boosted Generalized Additive Model
method = 'gamboost'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), prune
(AIC Prune?)
Boosted Generalized Linear Model
method = 'glmboost'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), prune
(AIC Prune?)
Boosted Linear Model
method = 'bstLs'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), nu
(Shrinkage)
Boosted Logistic Regression
method = 'LogitBoost'
Type: Classification
Tuning Parameters: nIter
(# Boosting Iterations)
Boosted Smoothing Spline
method = 'bstSm'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), nu
(Shrinkage)
Boosted Tree
method = 'blackboost'
Type: Regression, Classification
Tuning Parameters: mstop
(#Trees), maxdepth
(Max Tree Depth)
Boosted Tree
method = 'bstTree'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), maxdepth
(Max Tree Depth), nu
(Shrinkage)
C5.0
method = 'C5.0'
Type: Classification
Tuning Parameters: trials
(# Boosting Iterations), model
(Model Type), winnow
(Winnow)
Conditional Inference Random Forest
method = 'cforest'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Cost-Sensitive C5.0
method = 'C5.0Cost'
Type: Classification
Tuning Parameters: trials
(# Boosting Iterations), model
(Model Type), winnow
(Winnow), cost
(Cost)
Cubist
method = 'cubist'
Type: Regression
Tuning Parameters: committees
(#Committees), neighbors
(#Instances)
Model Averaged Neural Network
method = 'avNNet'
Type: Classification, Regression
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay), bag
(Bagging)
Oblique Random Forest
method = 'ORFlog'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFpls'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFridge'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFsvm'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Parallel Random Forest
method = 'parRF'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Quantile Random Forest
method = 'qrf'
Type: Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Quantile Regression Neural Network
method = 'qrnn'
Type: Regression
Tuning Parameters: n.hidden
(#Hidden Units), penalty
( Weight Decay), bag
(Bagged Models?)
Random Ferns
method = 'rFerns'
Type: Classification
Tuning Parameters: depth
(Fern Depth)
Random Forest
method = 'rf'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Random Forest by Randomization
method = 'extraTrees'
Type: Regression, Classification
Tuning Parameters: mtry
(# Randomly Selected Predictors), numRandomCuts
(# Random Cuts)
Random Forest with Additional Feature Selection
method = 'Boruta'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Regularized Random Forest
method = 'RRF'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors), coefReg
(Regularization Value), coefImp
(Importance Coefficient)
Regularized Random Forest
method = 'RRFglobal'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors), coefReg
(Regularization Value)
Stacked AutoEncoder Deep Neural Network
method = 'dnn'
Type: Classification, Regression
Tuning Parameters: layer1
(Hidden Layer 1), layer2
(Hidden Layer 2), layer3
(Hidden Layer 3), hidden_dropout
(Hidden Dropouts), visible_dropout
(Visible Dropout)
Stochastic Gradient Boosting
method = 'gbm'
Type: Regression, Classification
Tuning Parameters: n.trees
(# Boosting Iterations), interaction.depth
(Max Tree Depth), shrinkage
(Shrinkage)
Tree-Based Ensembles
method = 'nodeHarvest'
Type: Regression, Classification
Tuning Parameters: maxinter
(Maximum Interaction Depth), mode
(Prediction Mode)