Elasticnet
method = 'enet'
Type: Regression
Tuning Parameters: fraction
(Fraction of Full Solution), lambda
(Weight Decay)
glmnet
method = 'glmnet'
Type: Regression, Classification
Tuning Parameters: alpha
(Mixing Percentage), lambda
(Regularization Parameter)
Least Angle Regression
method = 'lars'
Type: Regression
Tuning Parameters: fraction
(Fraction)
Least Angle Regression
method = 'lars2'
Type: Regression
Tuning Parameters: step
(#Steps)
Penalized Linear Discriminant Analysis
method = 'PenalizedLDA'
Type: Classification
Tuning Parameters: lambda
(L1 Penalty), K
(#Discriminant Functions)
Penalized Linear Regression
method = 'penalized'
Type: Regression
Tuning Parameters: lambda1
(L1 Penalty), lambda2
(L2 Penalty)
Relaxed Lasso
method = 'relaxo'
Type: Regression
Tuning Parameters: lambda
(Penalty Parameter), phi
(Relaxation Parameter)
Sparse Linear Discriminant Analysis
method = 'sparseLDA'
Type: Classification
Tuning Parameters: NumVars
(# Predictors), lambda
(Lambda)
Sparse Mixture Discriminant Analysis
method = 'smda'
Type: Classification
Tuning Parameters: NumVars
(# Predictors), lambda
(Lambda), R
(# Subclasses)
Sparse Partial Least Squares
method = 'spls'
Type: Regression, Classification
Tuning Parameters: K
(#Components), eta
(Threshold), kappa
(Kappa)
The lasso
method = 'lasso'
Type: Regression
Tuning Parameters: fraction
(Fraction of Full Solution)