Bagged Logic Regression

method = 'logicBag'

Type: Regression, Classification

Tuning Parameters: nleaves (Maximum Number of Leaves), ntrees (Number of Trees)

Bayesian Generalized Linear Model

method = 'bayesglm'

Type: Regression, Classification

No Tuning Parameters

Boosted Generalized Linear Model

method = 'glmboost'

Type: Regression, Classification

Tuning Parameters: mstop (# Boosting Iterations), prune (AIC Prune?)

Factor-Based Linear Discriminant Analysis

method = 'RFlda'

Type: Classification

Tuning Parameters: q (# Factors)

Gaussian Process

method = 'gaussprLinear'

Type: Regression, Classification

No Tuning Parameters

Generalized Linear Model

method = 'glm'

Type: Regression, Classification

No Tuning Parameters

Generalized Linear Model with Stepwise Feature Selection

method = 'glmStepAIC'

Type: Regression, Classification

No Tuning Parameters

Generalized Partial Least Squares

method = 'gpls'

Type: Classification

Tuning Parameters: K.prov (#Components)

glmnet

method = 'glmnet'

Type: Regression, Classification

Tuning Parameters: alpha (Mixing Percentage), lambda (Regularization Parameter)

Heteroscedastic Discriminant Analysis

method = 'hda'

Type: Classification

Tuning Parameters: gamma (Gamma), lambda (Lambda), newdim (Dimension of the Discriminative Subspace)

High Dimensional Discriminant Analysis

method = 'hdda'

Type: Classification

Tuning Parameters: threshold (Threshold), model (Model Type)

Least Squares Support Vector Machine

method = 'lssvmLinear'

Type: Classification

No Tuning Parameters

Linear Discriminant Analysis

method = 'lda'

Type: Classification

No Tuning Parameters

Linear Discriminant Analysis

method = 'lda2'

Type: Classification

Tuning Parameters: dimen (#Discriminant Functions)

Linear Discriminant Analysis with Stepwise Feature Selection

method = 'stepLDA'

Type: Classification

Tuning Parameters: maxvar (Maximum #Variables), direction (Search Direction)

Logic Regression

method = 'logreg'

Type: Regression, Classification

Tuning Parameters: treesize (Maximum Number of Leaves), ntrees (Number of Trees)

Logistic Model Trees

method = 'LMT'

Type: Classification

Tuning Parameters: iter (# Iteratons)

Maximum Uncertainty Linear Discriminant Analysis

method = 'Mlda'

Type: Classification

No Tuning Parameters

Nearest Shrunken Centroids

method = 'pam'

Type: Classification

Tuning Parameters: threshold (Shrinkage Threshold)

Partial Least Squares

method = 'kernelpls'

Type: Regression, Classification

Tuning Parameters: ncomp (#Components)

Partial Least Squares

method = 'pls'

Type: Regression, Classification

Tuning Parameters: ncomp (#Components)

Partial Least Squares

method = 'simpls'

Type: Regression, Classification

Tuning Parameters: ncomp (#Components)

Partial Least Squares

method = 'widekernelpls'

Type: Regression, Classification

Tuning Parameters: ncomp (#Components)

Penalized Linear Discriminant Analysis

method = 'PenalizedLDA'

Type: Classification

Tuning Parameters: lambda (L1 Penalty), K (#Discriminant Functions)

Penalized Logistic Regression

method = 'plr'

Type: Classification

Tuning Parameters: lambda (L2 Penalty), cp (Complexity Parameter)

Penalized Multinomial Regression

method = 'multinom'

Type: Classification

Tuning Parameters: decay (Weight Decay)

Regularized Discriminant Analysis

method = 'rda'

Type: Classification

Tuning Parameters: gamma (Gamma), lambda (Lambda)

Robust Linear Discriminant Analysis

method = 'Linda'

Type: Classification

No Tuning Parameters

Robust Regularized Linear Discriminant Analysis

method = 'rrlda'

Type: Classification

Tuning Parameters: lambda (Penalty Parameter), hp (Robustness Parameter), penalty (Penalty Type)

Robust SIMCA

method = 'RSimca'

Type: Classification

No Tuning Parameters

Shrinkage Discriminant Analysis

method = 'sda'

Type: Classification

Tuning Parameters: diagonal (Diagonalize), lambda (shrinkage)

Sparse Linear Discriminant Analysis

method = 'sparseLDA'

Type: Classification

Tuning Parameters: NumVars (# Predictors), lambda (Lambda)

Sparse Partial Least Squares

method = 'spls'

Type: Regression, Classification

Tuning Parameters: K (#Components), eta (Threshold), kappa (Kappa)

Stabilized Linear Discriminant Analysis

method = 'slda'

Type: Classification

No Tuning Parameters

Stepwise Diagonal Linear Discriminant Analysis

method = 'sddaLDA'

Type: Classification

No Tuning Parameters

Support Vector Machines with Linear Kernel

method = 'svmLinear'

Type: Regression, Classification

Tuning Parameters: C (Cost)