Bagged Logic Regression
method = 'logicBag'
Type: Regression, Classification
Tuning Parameters: nleaves
(Maximum Number of Leaves), ntrees
(Number of Trees)
Bayesian Generalized Linear Model
method = 'bayesglm'
Type: Regression, Classification
No Tuning Parameters
Boosted Generalized Linear Model
method = 'glmboost'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), prune
(AIC Prune?)
Factor-Based Linear Discriminant Analysis
method = 'RFlda'
Type: Classification
Tuning Parameters: q
(# Factors)
Gaussian Process
method = 'gaussprLinear'
Type: Regression, Classification
No Tuning Parameters
Generalized Linear Model
method = 'glm'
Type: Regression, Classification
No Tuning Parameters
Generalized Linear Model with Stepwise Feature Selection
method = 'glmStepAIC'
Type: Regression, Classification
No Tuning Parameters
Generalized Partial Least Squares
method = 'gpls'
Type: Classification
Tuning Parameters: K.prov
(#Components)
glmnet
method = 'glmnet'
Type: Regression, Classification
Tuning Parameters: alpha
(Mixing Percentage), lambda
(Regularization Parameter)
Heteroscedastic Discriminant Analysis
method = 'hda'
Type: Classification
Tuning Parameters: gamma
(Gamma), lambda
(Lambda), newdim
(Dimension of the Discriminative Subspace)
High Dimensional Discriminant Analysis
method = 'hdda'
Type: Classification
Tuning Parameters: threshold
(Threshold), model
(Model Type)
Least Squares Support Vector Machine
method = 'lssvmLinear'
Type: Classification
No Tuning Parameters
Linear Discriminant Analysis
method = 'lda'
Type: Classification
No Tuning Parameters
Linear Discriminant Analysis
method = 'lda2'
Type: Classification
Tuning Parameters: dimen
(#Discriminant Functions)
Linear Discriminant Analysis with Stepwise Feature Selection
method = 'stepLDA'
Type: Classification
Tuning Parameters: maxvar
(Maximum #Variables), direction
(Search Direction)
Logic Regression
method = 'logreg'
Type: Regression, Classification
Tuning Parameters: treesize
(Maximum Number of Leaves), ntrees
(Number of Trees)
Logistic Model Trees
method = 'LMT'
Type: Classification
Tuning Parameters: iter
(# Iteratons)
Maximum Uncertainty Linear Discriminant Analysis
method = 'Mlda'
Type: Classification
No Tuning Parameters
Nearest Shrunken Centroids
method = 'pam'
Type: Classification
Tuning Parameters: threshold
(Shrinkage Threshold)
Partial Least Squares
method = 'kernelpls'
Type: Regression, Classification
Tuning Parameters: ncomp
(#Components)
Partial Least Squares
method = 'pls'
Type: Regression, Classification
Tuning Parameters: ncomp
(#Components)
Partial Least Squares
method = 'simpls'
Type: Regression, Classification
Tuning Parameters: ncomp
(#Components)
Partial Least Squares
method = 'widekernelpls'
Type: Regression, Classification
Tuning Parameters: ncomp
(#Components)
Penalized Linear Discriminant Analysis
method = 'PenalizedLDA'
Type: Classification
Tuning Parameters: lambda
(L1 Penalty), K
(#Discriminant Functions)
Penalized Logistic Regression
method = 'plr'
Type: Classification
Tuning Parameters: lambda
(L2 Penalty), cp
(Complexity Parameter)
Penalized Multinomial Regression
method = 'multinom'
Type: Classification
Tuning Parameters: decay
(Weight Decay)
Regularized Discriminant Analysis
method = 'rda'
Type: Classification
Tuning Parameters: gamma
(Gamma), lambda
(Lambda)
Robust Linear Discriminant Analysis
method = 'Linda'
Type: Classification
No Tuning Parameters
Robust Regularized Linear Discriminant Analysis
method = 'rrlda'
Type: Classification
Tuning Parameters: lambda
(Penalty Parameter), hp
(Robustness Parameter), penalty
(Penalty Type)
Robust SIMCA
method = 'RSimca'
Type: Classification
No Tuning Parameters
Shrinkage Discriminant Analysis
method = 'sda'
Type: Classification
Tuning Parameters: diagonal
(Diagonalize), lambda
(shrinkage)
Sparse Linear Discriminant Analysis
method = 'sparseLDA'
Type: Classification
Tuning Parameters: NumVars
(# Predictors), lambda
(Lambda)
Sparse Partial Least Squares
method = 'spls'
Type: Regression, Classification
Tuning Parameters: K
(#Components), eta
(Threshold), kappa
(Kappa)
Stabilized Linear Discriminant Analysis
method = 'slda'
Type: Classification
No Tuning Parameters
Stepwise Diagonal Linear Discriminant Analysis
method = 'sddaLDA'
Type: Classification
No Tuning Parameters
Support Vector Machines with Linear Kernel
method = 'svmLinear'
Type: Regression, Classification
Tuning Parameters: C
(Cost)