Bayesian Regularized Neural Networks
method = 'brnn'
Type: Regression
Tuning Parameters: neurons
(# Neurons)
Extreme Learning Machine
method = 'elm'
Type: Classification, Regression
Tuning Parameters: nhid
(#Hidden Units), actfun
(Activation Function)
Model Averaged Neural Network
method = 'avNNet'
Type: Classification, Regression
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay), bag
(Bagging)
Multi-Layer Perceptron
method = 'mlp'
Type: Regression, Classification
Tuning Parameters: size
(#Hidden Units)
Multi-Layer Perceptron
method = 'mlpWeightDecay'
Type: Regression, Classification
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay)
Neural Network
method = 'neuralnet'
Type: Regression
Tuning Parameters: layer1
(#Hidden Units in Layer 1), layer2
(#Hidden Units in Layer 2), layer3
(#Hidden Units in Layer 3)
Neural Network
method = 'nnet'
Type: Classification, Regression
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay)
Neural Networks with Feature Extraction
method = 'pcaNNet'
Type: Classification, Regression
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay)
Penalized Multinomial Regression
method = 'multinom'
Type: Classification
Tuning Parameters: decay
(Weight Decay)
Quantile Regression Neural Network
method = 'qrnn'
Type: Regression
Tuning Parameters: n.hidden
(#Hidden Units), penalty
( Weight Decay), bag
(Bagged Models?)
Radial Basis Function Network
method = 'rbf'
Type: Classification
Tuning Parameters: size
(#Hidden Units)
Radial Basis Function Network
method = 'rbfDDA'
Type: Regression, Classification
Tuning Parameters: negativeThreshold
(Activation Limit for Conflicting Classes)