Gaussian Process with Polynomial Kernel
method = 'gaussprPoly'
Type: Regression, Classification
Tuning Parameters: degree
(Polynomial Degree), scale
(Scale)
Least Squares Support Vector Machine with Polynomial Kernel
method = 'lssvmPoly'
Type: Classification
Tuning Parameters: degree
(Polynomial Degree), scale
(Scale)
Penalized Discriminant Analysis
method = 'pda'
Type: Classification
Tuning Parameters: lambda
(Shrinkage Penalty Coefficient)
Penalized Discriminant Analysis
method = 'pda2'
Type: Classification
Tuning Parameters: df
(Degrees of Freedom)
Polynomial Kernel Regularized Least Squares
method = 'krlsPoly'
Type: Regression
Tuning Parameters: lambda
(Regularization Parameter), degree
(Polynomial Degree)
Quadratic Discriminant Analysis
method = 'qda'
Type: Classification
No Tuning Parameters
Quadratic Discriminant Analysis with Stepwise Feature Selection
method = 'stepQDA'
Type: Classification
Tuning Parameters: maxvar
(Maximum #Variables), direction
(Search Direction)
Regularized Discriminant Analysis
method = 'rda'
Type: Classification
Tuning Parameters: gamma
(Gamma), lambda
(Lambda)
Relevance Vector Machines with Polynomial Kernel
method = 'rvmPoly'
Type: Regression
Tuning Parameters: scale
(Scale), degree
(Polynomial Degree)
Robust Quadratic Discriminant Analysis
method = 'QdaCov'
Type: Classification
No Tuning Parameters
Stepwise Diagonal Quadratic Discriminant Analysis
method = 'sddaQDA'
Type: Classification
No Tuning Parameters
Support Vector Machines with Polynomial Kernel
method = 'svmPoly'
Type: Regression, Classification
Tuning Parameters: degree
(Polynomial Degree), scale
(Cost), C
(Scale)