Bagged CART
method = 'treebag'
Type: Regression, Classification
No Tuning Parameters
Bagged Flexible Discriminant Analysis
method = 'bagFDA'
Type: Classification
Tuning Parameters: degree
(Product Degree), nprune
(#Terms)
Bagged Logic Regression
method = 'logicBag'
Type: Regression, Classification
Tuning Parameters: nleaves
(Maximum Number of Leaves), ntrees
(Number of Trees)
Bagged MARS
method = 'bagEarth'
Type: Regression, Classification
Tuning Parameters: nprune
(#Terms), degree
(Product Degree)
Bagged Model
method = 'bag'
Type: Regression, Classification
Tuning Parameters: vars
(#Randomly Selected Predictors)
Conditional Inference Random Forest
method = 'cforest'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Model Averaged Neural Network
method = 'avNNet'
Type: Classification, Regression
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay), bag
(Bagging)
Parallel Random Forest
method = 'parRF'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Quantile Random Forest
method = 'qrf'
Type: Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Quantile Regression Neural Network
method = 'qrnn'
Type: Regression
Tuning Parameters: n.hidden
(#Hidden Units), penalty
( Weight Decay), bag
(Bagged Models?)
Random Ferns
method = 'rFerns'
Type: Classification
Tuning Parameters: depth
(Fern Depth)
Random Forest
method = 'rf'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Random Forest by Randomization
method = 'extraTrees'
Type: Regression, Classification
Tuning Parameters: mtry
(# Randomly Selected Predictors), numRandomCuts
(# Random Cuts)
Regularized Random Forest
method = 'RRF'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors), coefReg
(Regularization Value), coefImp
(Importance Coefficient)
Regularized Random Forest
method = 'RRFglobal'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors), coefReg
(Regularization Value)
Stacked AutoEncoder Deep Neural Network
method = 'dnn'
Type: Classification, Regression
Tuning Parameters: layer1
(Hidden Layer 1), layer2
(Hidden Layer 2), layer3
(Hidden Layer 3), hidden_dropout
(Hidden Dropouts), visible_dropout
(Visible Dropout)