Bagged Flexible Discriminant Analysis
method = 'bagFDA'
Type: Classification
Tuning Parameters: degree (Product Degree), nprune (#Terms)
Bagged MARS
method = 'bagEarth'
Type: Regression, Classification
Tuning Parameters: nprune (#Terms), degree (Product Degree)
Boosted Classification Trees
method = 'ada'
Type: Classification
Tuning Parameters: iter (#Trees), maxdepth (Max Tree Depth), nu (Learning Rate)
Boosted Generalized Additive Model
method = 'gamboost'
Type: Regression, Classification
Tuning Parameters: mstop (# Boosting Iterations), prune (AIC Prune?)
Boosted Linear Model
method = 'bstLs'
Type: Regression, Classification
Tuning Parameters: mstop (# Boosting Iterations), nu (Shrinkage)
Boosted Logistic Regression
method = 'LogitBoost'
Type: Classification
Tuning Parameters: nIter (# Boosting Iterations)
Boosted Smoothing Spline
method = 'bstSm'
Type: Regression, Classification
Tuning Parameters: mstop (# Boosting Iterations), nu (Shrinkage)
C4.5-like Trees
method = 'J48'
Type: Classification
Tuning Parameters: C (Confidence Threshold)
C5.0
method = 'C5.0'
Type: Classification
Tuning Parameters: trials (# Boosting Iterations), model (Model Type), winnow (Winnow)
CART
method = 'rpart'
Type: Regression, Classification
Tuning Parameters: cp (Complexity Parameter)
CART
method = 'rpart2'
Type: Regression, Classification
Tuning Parameters: maxdepth (Max Tree Depth)
Conditional Inference Random Forest
method = 'cforest'
Type: Classification, Regression
Tuning Parameters: mtry (#Randomly Selected Predictors)
Conditional Inference Tree
method = 'ctree'
Type: Classification, Regression
Tuning Parameters: mincriterion (1 - P-Value Threshold)
Conditional Inference Tree
method = 'ctree2'
Type: Regression, Classification
Tuning Parameters: maxdepth (Max Tree Depth)
Cost-Sensitive C5.0
method = 'C5.0Cost'
Type: Classification
Tuning Parameters: trials (# Boosting Iterations), model (Model Type), winnow (Winnow), cost (Cost)
Cost-Sensitive CART
method = 'rpartCost'
Type: Classification
Tuning Parameters: cp (Complexity Parameter), Cost (Cost)
Cubist
method = 'cubist'
Type: Regression
Tuning Parameters: committees (#Committees), neighbors (#Instances)
Elasticnet
method = 'enet'
Type: Regression
Tuning Parameters: fraction (Fraction of Full Solution), lambda (Weight Decay)
Flexible Discriminant Analysis
method = 'fda'
Type: Classification
Tuning Parameters: degree (Product Degree), nprune (#Terms)
Generalized Linear Model with Stepwise Feature Selection
method = 'glmStepAIC'
Type: Regression, Classification
No Tuning Parameters
glmnet
method = 'glmnet'
Type: Regression, Classification
Tuning Parameters: alpha (Mixing Percentage), lambda (Regularization Parameter)
Least Angle Regression
method = 'lars'
Type: Regression
Tuning Parameters: fraction (Fraction)
Least Angle Regression
method = 'lars2'
Type: Regression
Tuning Parameters: step (#Steps)
Logistic Model Trees
method = 'LMT'
Type: Classification
Tuning Parameters: iter (# Iteratons)
Model Rules
method = 'M5Rules'
Type: Regression
Tuning Parameters: pruned (Pruned), smoothed (Smoothed)
Model Tree
method = 'M5'
Type: Regression
Tuning Parameters: pruned (Pruned), smoothed (Smoothed), rules (Rules)
Multivariate Adaptive Regression Spline
method = 'earth'
Type: Regression, Classification
Tuning Parameters: nprune (#Terms), degree (Product Degree)
Multivariate Adaptive Regression Splines
method = 'gcvEarth'
Type: Regression, Classification
Tuning Parameters: degree (Product Degree)
Nearest Shrunken Centroids
method = 'pam'
Type: Classification
Tuning Parameters: threshold (Shrinkage Threshold)
Oblique Random Forest
method = 'ORFlog'
Type: Classification
Tuning Parameters: mtry (#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFpls'
Type: Classification
Tuning Parameters: mtry (#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFridge'
Type: Classification
Tuning Parameters: mtry (#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFsvm'
Type: Classification
Tuning Parameters: mtry (#Randomly Selected Predictors)
Oblique Trees
method = 'oblique.tree'
Type: Classification
Tuning Parameters: oblique.splits (Oblique Splits), variable.selection (Variable Selection Method)
Parallel Random Forest
method = 'parRF'
Type: Classification, Regression
Tuning Parameters: mtry (#Randomly Selected Predictors)
Penalized Linear Discriminant Analysis
method = 'PenalizedLDA'
Type: Classification
Tuning Parameters: lambda (L1 Penalty), K (#Discriminant Functions)
Penalized Linear Regression
method = 'penalized'
Type: Regression
Tuning Parameters: lambda1 (L1 Penalty), lambda2 (L2 Penalty)
Quantile Random Forest
method = 'qrf'
Type: Regression
Tuning Parameters: mtry (#Randomly Selected Predictors)
Random Ferns
method = 'rFerns'
Type: Classification
Tuning Parameters: depth (Fern Depth)
Random Forest
method = 'rf'
Type: Classification, Regression
Tuning Parameters: mtry (#Randomly Selected Predictors)
Random Forest by Randomization
method = 'extraTrees'
Type: Regression, Classification
Tuning Parameters: mtry (# Randomly Selected Predictors), numRandomCuts (# Random Cuts)
Regularized Random Forest
method = 'RRF'
Type: Regression, Classification
Tuning Parameters: mtry (#Randomly Selected Predictors), coefReg (Regularization Value), coefImp (Importance Coefficient)
Regularized Random Forest
method = 'RRFglobal'
Type: Regression, Classification
Tuning Parameters: mtry (#Randomly Selected Predictors), coefReg (Regularization Value)
Relaxed Lasso
method = 'relaxo'
Type: Regression
Tuning Parameters: lambda (Penalty Parameter), phi (Relaxation Parameter)
Rule-Based Classifier
method = 'JRip'
Type: Classification
Tuning Parameters: NumOpt (# Optimizations)
Rule-Based Classifier
method = 'PART'
Type: Classification
Tuning Parameters: threshold (Confidence Threshold), pruned (Confidence Threshold)
Single C5.0 Ruleset
method = 'C5.0Rules'
Type: Classification
No Tuning Parameters
Single C5.0 Tree
method = 'C5.0Tree'
Type: Classification
No Tuning Parameters
Single Rule Classification
method = 'OneR'
Type: Classification
No Tuning Parameters
Sparse Linear Discriminant Analysis
method = 'sparseLDA'
Type: Classification
Tuning Parameters: NumVars (# Predictors), lambda (Lambda)
Sparse Mixture Discriminant Analysis
method = 'smda'
Type: Classification
Tuning Parameters: NumVars (# Predictors), lambda (Lambda), R (# Subclasses)
Stacked AutoEncoder Deep Neural Network
method = 'dnn'
Type: Classification, Regression
Tuning Parameters: layer1 (Hidden Layer 1), layer2 (Hidden Layer 2), layer3 (Hidden Layer 3), hidden_dropout (Hidden Dropouts), visible_dropout (Visible Dropout)
Stochastic Gradient Boosting
method = 'gbm'
Type: Regression, Classification
Tuning Parameters: n.trees (# Boosting Iterations), interaction.depth (Max Tree Depth), shrinkage (Shrinkage)
The lasso
method = 'lasso'
Type: Regression
Tuning Parameters: fraction (Fraction of Full Solution)
Tree Models from Genetic Algorithms
method = 'evtree'
Type: Regression, Classification
Tuning Parameters: alpha (Complexity Parameter)
Tree-Based Ensembles
method = 'nodeHarvest'
Type: Regression, Classification
Tuning Parameters: maxinter (Maximum Interaction Depth), mode (Prediction Mode)