Bagged Flexible Discriminant Analysis
method = 'bagFDA'
Type: Classification
Tuning Parameters: degree
(Product Degree), nprune
(#Terms)
Bagged MARS
method = 'bagEarth'
Type: Regression, Classification
Tuning Parameters: nprune
(#Terms), degree
(Product Degree)
Boosted Classification Trees
method = 'ada'
Type: Classification
Tuning Parameters: iter
(#Trees), maxdepth
(Max Tree Depth), nu
(Learning Rate)
Boosted Generalized Additive Model
method = 'gamboost'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), prune
(AIC Prune?)
Boosted Linear Model
method = 'bstLs'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), nu
(Shrinkage)
Boosted Logistic Regression
method = 'LogitBoost'
Type: Classification
Tuning Parameters: nIter
(# Boosting Iterations)
Boosted Smoothing Spline
method = 'bstSm'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), nu
(Shrinkage)
C4.5-like Trees
method = 'J48'
Type: Classification
Tuning Parameters: C
(Confidence Threshold)
C5.0
method = 'C5.0'
Type: Classification
Tuning Parameters: trials
(# Boosting Iterations), model
(Model Type), winnow
(Winnow)
CART
method = 'rpart'
Type: Regression, Classification
Tuning Parameters: cp
(Complexity Parameter)
CART
method = 'rpart2'
Type: Regression, Classification
Tuning Parameters: maxdepth
(Max Tree Depth)
Conditional Inference Random Forest
method = 'cforest'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Conditional Inference Tree
method = 'ctree'
Type: Classification, Regression
Tuning Parameters: mincriterion
(1 - P-Value Threshold)
Conditional Inference Tree
method = 'ctree2'
Type: Regression, Classification
Tuning Parameters: maxdepth
(Max Tree Depth)
Cost-Sensitive C5.0
method = 'C5.0Cost'
Type: Classification
Tuning Parameters: trials
(# Boosting Iterations), model
(Model Type), winnow
(Winnow), cost
(Cost)
Cost-Sensitive CART
method = 'rpartCost'
Type: Classification
Tuning Parameters: cp
(Complexity Parameter), Cost
(Cost)
Cubist
method = 'cubist'
Type: Regression
Tuning Parameters: committees
(#Committees), neighbors
(#Instances)
Elasticnet
method = 'enet'
Type: Regression
Tuning Parameters: fraction
(Fraction of Full Solution), lambda
(Weight Decay)
Flexible Discriminant Analysis
method = 'fda'
Type: Classification
Tuning Parameters: degree
(Product Degree), nprune
(#Terms)
Generalized Linear Model with Stepwise Feature Selection
method = 'glmStepAIC'
Type: Regression, Classification
No Tuning Parameters
glmnet
method = 'glmnet'
Type: Regression, Classification
Tuning Parameters: alpha
(Mixing Percentage), lambda
(Regularization Parameter)
Least Angle Regression
method = 'lars'
Type: Regression
Tuning Parameters: fraction
(Fraction)
Least Angle Regression
method = 'lars2'
Type: Regression
Tuning Parameters: step
(#Steps)
Logistic Model Trees
method = 'LMT'
Type: Classification
Tuning Parameters: iter
(# Iteratons)
Model Rules
method = 'M5Rules'
Type: Regression
Tuning Parameters: pruned
(Pruned), smoothed
(Smoothed)
Model Tree
method = 'M5'
Type: Regression
Tuning Parameters: pruned
(Pruned), smoothed
(Smoothed), rules
(Rules)
Multivariate Adaptive Regression Spline
method = 'earth'
Type: Regression, Classification
Tuning Parameters: nprune
(#Terms), degree
(Product Degree)
Multivariate Adaptive Regression Splines
method = 'gcvEarth'
Type: Regression, Classification
Tuning Parameters: degree
(Product Degree)
Nearest Shrunken Centroids
method = 'pam'
Type: Classification
Tuning Parameters: threshold
(Shrinkage Threshold)
Oblique Random Forest
method = 'ORFlog'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFpls'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFridge'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFsvm'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Trees
method = 'oblique.tree'
Type: Classification
Tuning Parameters: oblique.splits
(Oblique Splits), variable.selection
(Variable Selection Method)
Parallel Random Forest
method = 'parRF'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Penalized Linear Discriminant Analysis
method = 'PenalizedLDA'
Type: Classification
Tuning Parameters: lambda
(L1 Penalty), K
(#Discriminant Functions)
Penalized Linear Regression
method = 'penalized'
Type: Regression
Tuning Parameters: lambda1
(L1 Penalty), lambda2
(L2 Penalty)
Quantile Random Forest
method = 'qrf'
Type: Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Random Ferns
method = 'rFerns'
Type: Classification
Tuning Parameters: depth
(Fern Depth)
Random Forest
method = 'rf'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Random Forest by Randomization
method = 'extraTrees'
Type: Regression, Classification
Tuning Parameters: mtry
(# Randomly Selected Predictors), numRandomCuts
(# Random Cuts)
Regularized Random Forest
method = 'RRF'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors), coefReg
(Regularization Value), coefImp
(Importance Coefficient)
Regularized Random Forest
method = 'RRFglobal'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors), coefReg
(Regularization Value)
Relaxed Lasso
method = 'relaxo'
Type: Regression
Tuning Parameters: lambda
(Penalty Parameter), phi
(Relaxation Parameter)
Rule-Based Classifier
method = 'JRip'
Type: Classification
Tuning Parameters: NumOpt
(# Optimizations)
Rule-Based Classifier
method = 'PART'
Type: Classification
Tuning Parameters: threshold
(Confidence Threshold), pruned
(Confidence Threshold)
Single C5.0 Ruleset
method = 'C5.0Rules'
Type: Classification
No Tuning Parameters
Single C5.0 Tree
method = 'C5.0Tree'
Type: Classification
No Tuning Parameters
Single Rule Classification
method = 'OneR'
Type: Classification
No Tuning Parameters
Sparse Linear Discriminant Analysis
method = 'sparseLDA'
Type: Classification
Tuning Parameters: NumVars
(# Predictors), lambda
(Lambda)
Sparse Mixture Discriminant Analysis
method = 'smda'
Type: Classification
Tuning Parameters: NumVars
(# Predictors), lambda
(Lambda), R
(# Subclasses)
Stacked AutoEncoder Deep Neural Network
method = 'dnn'
Type: Classification, Regression
Tuning Parameters: layer1
(Hidden Layer 1), layer2
(Hidden Layer 2), layer3
(Hidden Layer 3), hidden_dropout
(Hidden Dropouts), visible_dropout
(Visible Dropout)
Stochastic Gradient Boosting
method = 'gbm'
Type: Regression, Classification
Tuning Parameters: n.trees
(# Boosting Iterations), interaction.depth
(Max Tree Depth), shrinkage
(Shrinkage)
The lasso
method = 'lasso'
Type: Regression
Tuning Parameters: fraction
(Fraction of Full Solution)
Tree Models from Genetic Algorithms
method = 'evtree'
Type: Regression, Classification
Tuning Parameters: alpha
(Complexity Parameter)
Tree-Based Ensembles
method = 'nodeHarvest'
Type: Regression, Classification
Tuning Parameters: maxinter
(Maximum Interaction Depth), mode
(Prediction Mode)