Elasticnet
method = 'enet'
Type: Regression
Tuning Parameters: fraction (Fraction of Full Solution), lambda (Weight Decay)
glmnet
method = 'glmnet'
Type: Regression, Classification
Tuning Parameters: alpha (Mixing Percentage), lambda (Regularization Parameter)
Least Angle Regression
method = 'lars'
Type: Regression
Tuning Parameters: fraction (Fraction)
Least Angle Regression
method = 'lars2'
Type: Regression
Tuning Parameters: step (#Steps)
Penalized Linear Discriminant Analysis
method = 'PenalizedLDA'
Type: Classification
Tuning Parameters: lambda (L1 Penalty), K (#Discriminant Functions)
Penalized Linear Regression
method = 'penalized'
Type: Regression
Tuning Parameters: lambda1 (L1 Penalty), lambda2 (L2 Penalty)
Relaxed Lasso
method = 'relaxo'
Type: Regression
Tuning Parameters: lambda (Penalty Parameter), phi (Relaxation Parameter)
Sparse Linear Discriminant Analysis
method = 'sparseLDA'
Type: Classification
Tuning Parameters: NumVars (# Predictors), lambda (Lambda)
Sparse Mixture Discriminant Analysis
method = 'smda'
Type: Classification
Tuning Parameters: NumVars (# Predictors), lambda (Lambda), R (# Subclasses)
Sparse Partial Least Squares
method = 'spls'
Type: Regression, Classification
Tuning Parameters: K (#Components), eta (Threshold), kappa (Kappa)
The lasso
method = 'lasso'
Type: Regression
Tuning Parameters: fraction (Fraction of Full Solution)