glmnet
method = 'glmnet'
Type: Regression, Classification
Tuning Parameters: alpha (Mixing Percentage), lambda (Regularization Parameter)
Model Averaged Neural Network
method = 'avNNet'
Type: Classification, Regression
Tuning Parameters: size (#Hidden Units), decay (Weight Decay), bag (Bagging)
Multi-Layer Perceptron
method = 'mlpWeightDecay'
Type: Regression, Classification
Tuning Parameters: size (#Hidden Units), decay (Weight Decay)
Neural Network
method = 'nnet'
Type: Classification, Regression
Tuning Parameters: size (#Hidden Units), decay (Weight Decay)
Neural Networks with Feature Extraction
method = 'pcaNNet'
Type: Classification, Regression
Tuning Parameters: size (#Hidden Units), decay (Weight Decay)
Oblique Random Forest
method = 'ORFridge'
Type: Classification
Tuning Parameters: mtry (#Randomly Selected Predictors)
Penalized Linear Regression
method = 'penalized'
Type: Regression
Tuning Parameters: lambda1 (L1 Penalty), lambda2 (L2 Penalty)
Penalized Logistic Regression
method = 'plr'
Type: Classification
Tuning Parameters: lambda (L2 Penalty), cp (Complexity Parameter)
Penalized Multinomial Regression
method = 'multinom'
Type: Classification
Tuning Parameters: decay (Weight Decay)
Polynomial Kernel Regularized Least Squares
method = 'krlsPoly'
Type: Regression
Tuning Parameters: lambda (Regularization Parameter), degree (Polynomial Degree)
Quantile Regression Neural Network
method = 'qrnn'
Type: Regression
Tuning Parameters: n.hidden (#Hidden Units), penalty ( Weight Decay), bag (Bagged Models?)
Radial Basis Function Kernel Regularized Least Squares
method = 'krlsRadial'
Type: Regression
Tuning Parameters: lambda (Regularization Parameter), sigma (Sigma)
Radial Basis Function Network
method = 'rbf'
Type: Classification
Tuning Parameters: size (#Hidden Units)
Radial Basis Function Network
method = 'rbfDDA'
Type: Regression, Classification
Tuning Parameters: negativeThreshold (Activation Limit for Conflicting Classes)
Relaxed Lasso
method = 'relaxo'
Type: Regression
Tuning Parameters: lambda (Penalty Parameter), phi (Relaxation Parameter)
Ridge Regression
method = 'ridge'
Type: Regression
Tuning Parameters: lambda (Weight Decay)
Ridge Regression with Variable Selection
method = 'foba'
Type: Regression
Tuning Parameters: k (#Variables Retained), lambda (L2 Penalty)