glmnet
method = 'glmnet'
Type: Regression, Classification
Tuning Parameters: alpha
(Mixing Percentage), lambda
(Regularization Parameter)
Model Averaged Neural Network
method = 'avNNet'
Type: Classification, Regression
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay), bag
(Bagging)
Multi-Layer Perceptron
method = 'mlpWeightDecay'
Type: Regression, Classification
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay)
Neural Network
method = 'nnet'
Type: Classification, Regression
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay)
Neural Networks with Feature Extraction
method = 'pcaNNet'
Type: Classification, Regression
Tuning Parameters: size
(#Hidden Units), decay
(Weight Decay)
Oblique Random Forest
method = 'ORFridge'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Penalized Linear Regression
method = 'penalized'
Type: Regression
Tuning Parameters: lambda1
(L1 Penalty), lambda2
(L2 Penalty)
Penalized Logistic Regression
method = 'plr'
Type: Classification
Tuning Parameters: lambda
(L2 Penalty), cp
(Complexity Parameter)
Penalized Multinomial Regression
method = 'multinom'
Type: Classification
Tuning Parameters: decay
(Weight Decay)
Polynomial Kernel Regularized Least Squares
method = 'krlsPoly'
Type: Regression
Tuning Parameters: lambda
(Regularization Parameter), degree
(Polynomial Degree)
Quantile Regression Neural Network
method = 'qrnn'
Type: Regression
Tuning Parameters: n.hidden
(#Hidden Units), penalty
( Weight Decay), bag
(Bagged Models?)
Radial Basis Function Kernel Regularized Least Squares
method = 'krlsRadial'
Type: Regression
Tuning Parameters: lambda
(Regularization Parameter), sigma
(Sigma)
Radial Basis Function Network
method = 'rbf'
Type: Classification
Tuning Parameters: size
(#Hidden Units)
Radial Basis Function Network
method = 'rbfDDA'
Type: Regression, Classification
Tuning Parameters: negativeThreshold
(Activation Limit for Conflicting Classes)
Relaxed Lasso
method = 'relaxo'
Type: Regression
Tuning Parameters: lambda
(Penalty Parameter), phi
(Relaxation Parameter)
Ridge Regression
method = 'ridge'
Type: Regression
Tuning Parameters: lambda
(Weight Decay)
Ridge Regression with Variable Selection
method = 'foba'
Type: Regression
Tuning Parameters: k
(#Variables Retained), lambda
(L2 Penalty)