Bagged Logic Regression
method = 'logicBag'
Type: Regression, Classification
Tuning Parameters: nleaves
(Maximum Number of Leaves), ntrees
(Number of Trees)
Boosted Linear Model
method = 'bstLs'
Type: Regression, Classification
Tuning Parameters: mstop
(# Boosting Iterations), nu
(Shrinkage)
Cubist
method = 'cubist'
Type: Regression
Tuning Parameters: committees
(#Committees), neighbors
(#Instances)
Elasticnet
method = 'enet'
Type: Regression
Tuning Parameters: fraction
(Fraction of Full Solution), lambda
(Weight Decay)
glmnet
method = 'glmnet'
Type: Regression, Classification
Tuning Parameters: alpha
(Mixing Percentage), lambda
(Regularization Parameter)
Independent Component Regression
method = 'icr'
Type: Regression
Tuning Parameters: n.comp
(#Components)
Least Angle Regression
method = 'lars'
Type: Regression
Tuning Parameters: fraction
(Fraction)
Least Angle Regression
method = 'lars2'
Type: Regression
Tuning Parameters: step
(#Steps)
Linear Regression
method = 'lm'
Type: Regression
No Tuning Parameters
Linear Regression with Backwards Selection
method = 'leapBackward'
Type: Regression
Tuning Parameters: nvmax
(Maximum Number of Predictors)
Linear Regression with Forward Selection
method = 'leapForward'
Type: Regression
Tuning Parameters: nvmax
(Maximum Number of Predictors)
Linear Regression with Stepwise Selection
method = 'leapSeq'
Type: Regression
Tuning Parameters: nvmax
(Maximum Number of Predictors)
Linear Regression with Stepwise Selection
method = 'lmStepAIC'
Type: Regression
No Tuning Parameters
Logic Regression
method = 'logreg'
Type: Regression, Classification
Tuning Parameters: treesize
(Maximum Number of Leaves), ntrees
(Number of Trees)
Model Rules
method = 'M5Rules'
Type: Regression
Tuning Parameters: pruned
(Pruned), smoothed
(Smoothed)
Model Tree
method = 'M5'
Type: Regression
Tuning Parameters: pruned
(Pruned), smoothed
(Smoothed), rules
(Rules)
Partial Least Squares
method = 'kernelpls'
Type: Regression, Classification
Tuning Parameters: ncomp
(#Components)
Partial Least Squares
method = 'pls'
Type: Regression, Classification
Tuning Parameters: ncomp
(#Components)
Partial Least Squares
method = 'simpls'
Type: Regression, Classification
Tuning Parameters: ncomp
(#Components)
Partial Least Squares
method = 'widekernelpls'
Type: Regression, Classification
Tuning Parameters: ncomp
(#Components)
Penalized Linear Regression
method = 'penalized'
Type: Regression
Tuning Parameters: lambda1
(L1 Penalty), lambda2
(L2 Penalty)
Principal Component Analysis
method = 'pcr'
Type: Regression
Tuning Parameters: ncomp
(#Components)
Relaxed Lasso
method = 'relaxo'
Type: Regression
Tuning Parameters: lambda
(Penalty Parameter), phi
(Relaxation Parameter)
Relevance Vector Machines with Linear Kernel
method = 'rvmLinear'
Type: Regression
No Tuning Parameters
Ridge Regression
method = 'ridge'
Type: Regression
Tuning Parameters: lambda
(Weight Decay)
Ridge Regression with Variable Selection
method = 'foba'
Type: Regression
Tuning Parameters: k
(#Variables Retained), lambda
(L2 Penalty)
Robust Linear Model
method = 'rlm'
Type: Regression
No Tuning Parameters
Sparse Partial Least Squares
method = 'spls'
Type: Regression, Classification
Tuning Parameters: K
(#Components), eta
(Threshold), kappa
(Kappa)
Supervised Principal Component Analysis
method = 'superpc'
Type: Regression
Tuning Parameters: threshold
(Threshold), n.components
(#Components)
Support Vector Machines with Linear Kernel
method = 'svmLinear'
Type: Regression, Classification
Tuning Parameters: C
(Cost)
The lasso
method = 'lasso'
Type: Regression
Tuning Parameters: fraction
(Fraction of Full Solution)