Bagged Logic Regression

method = 'logicBag'

Type: Regression, Classification

Tuning Parameters: nleaves (Maximum Number of Leaves), ntrees (Number of Trees)

Boosted Linear Model

method = 'bstLs'

Type: Regression, Classification

Tuning Parameters: mstop (# Boosting Iterations), nu (Shrinkage)

Cubist

method = 'cubist'

Type: Regression

Tuning Parameters: committees (#Committees), neighbors (#Instances)

Elasticnet

method = 'enet'

Type: Regression

Tuning Parameters: fraction (Fraction of Full Solution), lambda (Weight Decay)

glmnet

method = 'glmnet'

Type: Regression, Classification

Tuning Parameters: alpha (Mixing Percentage), lambda (Regularization Parameter)

Independent Component Regression

method = 'icr'

Type: Regression

Tuning Parameters: n.comp (#Components)

Least Angle Regression

method = 'lars'

Type: Regression

Tuning Parameters: fraction (Fraction)

Least Angle Regression

method = 'lars2'

Type: Regression

Tuning Parameters: step (#Steps)

Linear Regression

method = 'lm'

Type: Regression

No Tuning Parameters

Linear Regression with Backwards Selection

method = 'leapBackward'

Type: Regression

Tuning Parameters: nvmax (Maximum Number of Predictors)

Linear Regression with Forward Selection

method = 'leapForward'

Type: Regression

Tuning Parameters: nvmax (Maximum Number of Predictors)

Linear Regression with Stepwise Selection

method = 'leapSeq'

Type: Regression

Tuning Parameters: nvmax (Maximum Number of Predictors)

Linear Regression with Stepwise Selection

method = 'lmStepAIC'

Type: Regression

No Tuning Parameters

Logic Regression

method = 'logreg'

Type: Regression, Classification

Tuning Parameters: treesize (Maximum Number of Leaves), ntrees (Number of Trees)

Model Rules

method = 'M5Rules'

Type: Regression

Tuning Parameters: pruned (Pruned), smoothed (Smoothed)

Model Tree

method = 'M5'

Type: Regression

Tuning Parameters: pruned (Pruned), smoothed (Smoothed), rules (Rules)

Partial Least Squares

method = 'kernelpls'

Type: Regression, Classification

Tuning Parameters: ncomp (#Components)

Partial Least Squares

method = 'pls'

Type: Regression, Classification

Tuning Parameters: ncomp (#Components)

Partial Least Squares

method = 'simpls'

Type: Regression, Classification

Tuning Parameters: ncomp (#Components)

Partial Least Squares

method = 'widekernelpls'

Type: Regression, Classification

Tuning Parameters: ncomp (#Components)

Penalized Linear Regression

method = 'penalized'

Type: Regression

Tuning Parameters: lambda1 (L1 Penalty), lambda2 (L2 Penalty)

Principal Component Analysis

method = 'pcr'

Type: Regression

Tuning Parameters: ncomp (#Components)

Relaxed Lasso

method = 'relaxo'

Type: Regression

Tuning Parameters: lambda (Penalty Parameter), phi (Relaxation Parameter)

Relevance Vector Machines with Linear Kernel

method = 'rvmLinear'

Type: Regression

No Tuning Parameters

Ridge Regression

method = 'ridge'

Type: Regression

Tuning Parameters: lambda (Weight Decay)

Ridge Regression with Variable Selection

method = 'foba'

Type: Regression

Tuning Parameters: k (#Variables Retained), lambda (L2 Penalty)

Robust Linear Model

method = 'rlm'

Type: Regression

No Tuning Parameters

Sparse Partial Least Squares

method = 'spls'

Type: Regression, Classification

Tuning Parameters: K (#Components), eta (Threshold), kappa (Kappa)

Supervised Principal Component Analysis

method = 'superpc'

Type: Regression

Tuning Parameters: threshold (Threshold), n.components (#Components)

Support Vector Machines with Linear Kernel

method = 'svmLinear'

Type: Regression, Classification

Tuning Parameters: C (Cost)

The lasso

method = 'lasso'

Type: Regression

Tuning Parameters: fraction (Fraction of Full Solution)