Gaussian Process with Radial Basis Function Kernel
method = 'gaussprRadial'
Type: Regression, Classification
Tuning Parameters: sigma
(Sigma)
Least Squares Support Vector Machine with Radial Basis Function Kernel
method = 'lssvmRadial'
Type: Classification
Tuning Parameters: sigma
(Sigma)
Radial Basis Function Kernel Regularized Least Squares
method = 'krlsRadial'
Type: Regression
Tuning Parameters: lambda
(Regularization Parameter), sigma
(Sigma)
Radial Basis Function Network
method = 'rbf'
Type: Classification
Tuning Parameters: size
(#Hidden Units)
Radial Basis Function Network
method = 'rbfDDA'
Type: Regression, Classification
Tuning Parameters: negativeThreshold
(Activation Limit for Conflicting Classes)
Relevance Vector Machines with Radial Basis Function Kernel
method = 'rvmRadial'
Type: Regression
Tuning Parameters: sigma
(Sigma)
Support Vector Machines with Class Weights
method = 'svmRadialWeights'
Type: Classification
Tuning Parameters: sigma
(Sigma), C
(Cost), Weight
(Weight)
Support Vector Machines with Radial Basis Function Kernel
method = 'svmRadial'
Type: Regression, Classification
Tuning Parameters: sigma
(Sigma), C
(Cost)
Support Vector Machines with Radial Basis Function Kernel
method = 'svmRadialCost'
Type: Regression, Classification
Tuning Parameters: C
(Cost)
Variational Bayesian Multinomial Probit Regression
method = 'vbmpRadial'
Type: Classification
Tuning Parameters: estimateTheta
(Theta Estimated)