Conditional Inference Random Forest
method = 'cforest'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFlog'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFpls'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFridge'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Oblique Random Forest
method = 'ORFsvm'
Type: Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Parallel Random Forest
method = 'parRF'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Quantile Random Forest
method = 'qrf'
Type: Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Random Ferns
method = 'rFerns'
Type: Classification
Tuning Parameters: depth
(Fern Depth)
Random Forest
method = 'rf'
Type: Classification, Regression
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Random Forest by Randomization
method = 'extraTrees'
Type: Regression, Classification
Tuning Parameters: mtry
(# Randomly Selected Predictors), numRandomCuts
(# Random Cuts)
Random Forest with Additional Feature Selection
method = 'Boruta'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors)
Regularized Random Forest
method = 'RRF'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors), coefReg
(Regularization Value), coefImp
(Importance Coefficient)
Regularized Random Forest
method = 'RRFglobal'
Type: Regression, Classification
Tuning Parameters: mtry
(#Randomly Selected Predictors), coefReg
(Regularization Value)
Stacked AutoEncoder Deep Neural Network
method = 'dnn'
Type: Classification, Regression
Tuning Parameters: layer1
(Hidden Layer 1), layer2
(Hidden Layer 2), layer3
(Hidden Layer 3), hidden_dropout
(Hidden Dropouts), visible_dropout
(Visible Dropout)